From point particles to rigid bodies in MCell J

Burak Kaynak

Bahar Lab
Department of Computational & Systems Biology
University of Pittsburgh

MMBioS Meeting, December 2018

ST VO EU N (VI TV A i i 1017 ) Ml n corporation of rigid body motion into MCell December 2018 1/45



Table of Contents

@ Introduction

ST VO EU I (VI TV A il a5 1117- ) Ml n corporation of rigid body motion into MCell December 2018 2 /45



Introduction

Our motivation

Definition of the problem

To capture the behavior of particles with spatial extent based on their rigid
body features, dynamics, diffusion and hydrodynamic interactions
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Fig: Schuss Z., Brownian Dynamics at Boundaries and Interfaces, Springer, 2013.
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Introduction

Our proposal

@ Coarse-graining the structure of molecules as a series of subunits
connected by linkers.
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Introduction

Our proposal

@ Coarse-graining the structure of molecules as a series of subunits
connected by linkers.

@ Each subunit will contain a rigid cluster of C® atoms, possibly
determined based on SPECTRUS algorithm?.

aPc:)nzoni et al., Structure 2015.
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Introduction

Our proposal

@ Coarse-graining the structure of molecules as a series of subunits
connected by linkers.

@ Each subunit will contain a rigid cluster of C® atoms, possibly
determined based on SPECTRUS algorithm?.

@ If the molecule is small enough, it may be modeled either as a single
ellipsoid ((a)symmetric top) with minimum volume, or as connected
spheres.

aPc:)nzoni et al., Structure 2015.
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Introduction

Our proposal

@ Coarse-graining the structure of molecules as a series of subunits
connected by linkers.

@ Each subunit will contain a rigid cluster of C® atoms, possibly
determined based on SPECTRUS algorithm?.

@ If the molecule is small enough, it may be modeled either as a single
ellipsoid ((a)symmetric top) with minimum volume, or as connected
spheres.

@ Otherwise, it can be represented by multiple rigid bodies, connected
by linkers (e.g. springs).

aPc:)nzoni et al., Structure 2015.
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Example: GLIC — ligand-gated ion channel

6-domain dynamical decomposition by SPECTRUS + RTB!(Rotation
Translation Blocks)

1
Tama et al., Proteins 2000.
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Stochastic Differential Equations (SDEs)

@ A Wiener type stochastic differential equation is given by

dXt = a(Xt, t)dt + b(Xh t)th,

deterministic stochastic

where X;, W; are a stochastic variable and a Wiener process,
respectively.

@ A Wiener process can be defined as a limit of an unbiased random
walk with independent Gaussian increments such that

Wt+5 — Wt %N’(O,S) .
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Stochastic Differential Equations (SDEs)

o Non-differentiable with probability 1, albeit continuous.
(WiWEY = afé,-j min(t,s),
(AW, dWi) 355(z — 5),
dt?* = dtdW; =0,
(dW;)? = dt & dW; ~ VAt.

@ A formal solution of a SDE is given by

t t
X: = Xp +/ ds a(Xs, s) +/ dWs b(Xs, s),
0 0

where the last integral is taken in the [t6 sense.
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Stochastic Differential Equations (SDEs)

I1t6 Calculus

@ Leibniz's product rule for stochastic differential:
d(Xt Yt) - Ytht + XtdYt + dXtdYt .

@ |to Lemma: 1
dF: = f'(X;)dX; + Ef”(Xt)(dXt)2,

where F; = f(X}).
@ Integration by parts:

b
/ dW,f(t)g'(W;) = f(t)g Wt)\ /dtf’(t)g(Wt)
b
—;/a dtf (tg (W) .
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Ornstein-Uhlenbeck process

One dimensional diffusion of a point particle

@ One-dimensional Langevin equation is an Ornstein-Uhlenbeck process:
dXt = tht,
det = —thdt + det7

where m and £ are the mass and the friction constant, respectively.
o Let's define 7 = m/¢,

b t

v = vpe T+ / dW,e (t=9)/T
mJo

@ Equipartion theorem allows us to relate the long-time diffusion process

to its average energy over as ensemble as a thermodynamic limit.

ks T
(V¥)eq = BT = b? = 2kgT.
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Ornstein-Uhlenbeck process

@ Similarly for the x; process:

Xt = Xg + VoT (1 — e*t/7> 7;: / dW [1 — ef(t*s)/T} .

@ Let’'s look at the mean square displacement:

2Tk T
_ 2 _ B B o t)T
(e~ x0Veq = B L [t (1~ e7/7)]

ke T

: w2y kel oo

lim{(xe = x0)%)eq = = 5t

. 2kg T

tllmo((xt—xof)eq: : t=2Dt,

where D is the diffusion constant.(Fluctuation-dissipation theorem?).

2
Kubo, Rep. Prog. Phys. 1966.
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Diffusion properties of rigid bodies

Diffusion and friction tensor

e Diffusion D and friction ¢ tensors of a 3-dimensional rigid body>:

p_ (fDsx3 “Dis kBT§ 1
"Dixs "D3x3)g s M

1 being the viscosity of the fluid.

@ The coupling term ' D is symmetric only at center of diffusion, which
is unique for a body.

It is zero at the center of hydrodynamic stress if such a point exist.

They do not need to coincide with the center of mass.

3Brener, J. Coll. Inter. Sci. 1967.
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Diffusion properties of rigid bodies

Diffusion and friction tensor

e For spherically isotropic particles (spheres, tetrahedra, cubes,
octahedra, dodecahedra and icosahedra) ¥ D = 0 far away a boundary.

@ Even for a sphere near a wall, D # 0!

@ Triaxial ellipsoids possess three mutually orthogonal planes of
reflection symmetry so that

D =0.

o Caveat: A general ellipsoid cannot always as a model for the
rotational features of arbitrarily shaped rigid molecules due to
Wegener?.

4
Wegener et al., PNAS 1979.
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Diffusion properties of rigid bodies

Example: Diffusion tensor of an ellipsoid

Diffusion constants of an ellipsoid®, defined by —l— + =1

tt

ke T
- 1§7w lere1(x + aion) + ezea(x + a302) + ezes(x + a303)]

2 2 2 2 2 2
"D — 3kgT ( Le1 asap + aza3 azasz + ajq ajag + a2a2>
- 9y

2 2 22— 55 €335 2
16mu as + a3z az + aj a7 + a5

where eg are unit vectors parallel to the principal axes of the ellipsoid, and

e d\
0‘6:/0 m, (8=1,2,3),
*® dX
o AN’
AR = [(a + )33+ NE+ V]2

X:

sBrener, J. Coll. Inter. Sci. 1967.
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)®

@ (x,y) and (x/,y’) are the lab and body frames coords., respectively.

y b

@ a and b denote the

Ynr principal directions of
the ellipse.
@ 0 stands for the
S orientation of the ellipse
n-t w.r.t. the inertial frame.
X, x, Tx :
n-1 n ‘

6

Y. Han et al., Science 314 (2006) 626.
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

@ Diffusion tensor in the body frame is diagonal:

D, 0 0
p'=(0 D, 0
0 0 Dy

@ Equations of motion in the lab frame:

dx = cos /2D, dW' —sin /2D, dW?
dy = sin0\/2D,,dW* + cos6,/2D, dW?,

df = \/2DgdW?3.

o Diffusion tensor is no longer diagonal in the lab frame.
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

@ The time dependent diffusion coefficients for fixed 6y in the lab frame

is given by
B 1 — e—4Dot
Dy =D+ AD cosQGoTet )
_ 1 — e—4Dot
D,, = D — AD cos 2008T9t ,
D,, = ADsin 2901_8;(;%,

where D = (D, + D,/)/2 and AD = D,s — D,
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

The vertical axes are the time evolution of diffusion tensor in the lab frame.

Dy =15, D, =10, Dp=10, nsep=10°, ngp,=10°

Dyx, Dyy, 6=0 Dy, 6=m/12
15 *  Dyx-simulation | | g = Dxy-simulation
Dy,-simulation o012 —— theoretical Dy,
—— theoretical Dy,

14 theoretical Dy,
—— (Dx+Dy)2

Diffusion coefficients ([L2/T])
Diffusion constant ([L2/T])

2 3 2 3
Time ([T]) Time ([T])

Diheo = 1.25, Dajm = 1.26
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Rigid body dynamics

Euler angles in ZXZ convention

@ X and x’ are the space-fixed and
body-fixed frames, respectively.

@ The rotation matrix transforming from
the space-fixed to body-fixed frame is
given by:

x' = AX.

cycp — clspsy cs¢ + clcopsy  sipsh
A= | —sicp — cOspcyy —sipsp + clcopcy cypsh |
sOs¢ —sbco c

where ¢ and s stand for cos and sin, respectively.
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Rigid body dynamics

Euler's equations

@ Equations of motion:

hwy — (b — B)waws = 11,
haws — (B — h)wswy =72,
hws — (h — h)wiws = 73,
where w, is the angular velocity about the principal axis «, /, is the

moment of inertia, and 7, is the external torque.
@ The moment of inertia:

log =Y mi (r?ap — riarig) , i=1,...,N, «a,8=1,2,3.
o Euler angles:

ézwl COS Y — Wy Cos Y,

¢ = (w1 sint) + wpcostp)/sinb,
¢ =ws — cot O(wy siny) + wy cos ).
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Rigid body dynamics

Euler's equations

@ Euler's equations are singular for small 6 values, not ideal for
numerical simulations.
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Rigid body dynamics

Euler's equations

@ Euler's equations are singular for small 6 values, not ideal for
numerical simulations.

o If two rotations become coplanar, then we lose one rotational degree
of freedom, known as Gimbal lock.
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Rigid body dynamics

Euler's equations

@ Euler's equations are singular for small 6 values, not ideal for
numerical simulations.

o If two rotations become coplanar, then we lose one rotational degree
of freedom, known as Gimbal lock.

@ Rigid body motion is an example of a constrained dynamical system.
Therefore, appropriate constraint schemes should be implemented for
numerical simulations (SHAKE, RATTLE).
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Rigid body dynamics

Euler's equations

@ Euler's equations are singular for small 6 values, not ideal for
numerical simulations.

o If two rotations become coplanar, then we lose one rotational degree
of freedom, known as Gimbal lock.

@ Rigid body motion is an example of a constrained dynamical system.
Therefore, appropriate constraint schemes should be implemented for
numerical simulations (SHAKE, RATTLE).

@ Instead, we can use quaternions not only to represent rotations but
also to describe the rigid body dynamics.
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Rigid body dynamics

Quaternions

@ Quaternions are an (algebraic) extension of complex numbers.

q=qo+iq+jg+kqs, —1=i°=j;*=k =ik,

* 1 1 ) ) ;
9" =qo—iq —jg2—kas, |lql>=qxq", "1:W‘

They have a noncommutative multiplication:

g*p=(qopo —q-P,qop + pod +q x p).

The multiplication of unit quaternions can preserve their unit length.
Unit quaternions represent rotations in R3 and are nonsingular.

g=cos 1P, @ g 1®]
2 o 2

Pure quaternions represent vectors: v = (0, vy, vy, V).

Rotation of a vector via a quaternion: v/ = g* v % g*.
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Rigid body dynamics

Rotation of a rigid body by quaternions

@ Map between Euler angles in ZXZ convention and quaternions

P+ 0 o—v

1 = sin =cos
9 2

0
qo = cos 5 cos

2 7 2 7
q2:sinfsind)_¢ q3+cos€sin¢+w.
2 2 7 2 2

@ Rotation matrix in terms of a quaternion is given by

9+ ai — % q192 + QOCIi% 4193 — qoq2
Aq)=2|q2—qoq3 a3 +a95— 3 qaz+ 9091
9193 + G092 G2G3 — Goqr G4 + g3 — >
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Rigid body dynamics

Rigid body Hamiltonian in terms of quaternions’®

@ The Hamiltonian of n rigid bodies with center of mass coordinates
r=0T, ..., r”T)T € R3", and orientations given by unit
quaternions q = (qlT, el q”T)T, q = (q("), qi, g5, qi) € S5.

H(r,p,q,7) = —i—ZZ Vi(q',7') + U(r,q),
i=1 i=1 I=1
where p and 7 are, respectively, the center of mass momenta
conjugate to r and the angular momenta conjugate to g such that
qiTﬂi =0,ie 7w € T;,-S3.
@ The rotational kinetic energy is given by

1 7¢ 1 Vilg',m') 1 2
Vi(g,m) = §[7T Siq°, T = 5’/“’; )
where S are three 4 x 4 constant projection matrices.

7Miller et al. J. Chem. Phys. 2002
8Davidchack et al. J. Chem. Phys. 2017
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Rigid body dynamics

Symplectic integrator

e Hamilton's equations of motions for (r, p):

()= (5 5 (%)

5) —\ = 9H

p 10 op

@ The matrix in the middle above 2 roles as a metric tensor of the
phase space. Any canonical transformations leaving this metric
invariant preserves the volume of the phase space (Liouville's

theorem):

T =Q,
where J is the Jacobian of the canonical transformations. If
det J =1, then it is called symplectic.

@ Symplectic integrators enjoy similar features, especially when the
Hamiltonian is separable.
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Rigid body dynamics

Symplectic integrator

@ Each step of the numerical integration in this picture corresponds to
an action of an evolution operator, known as Liouville operator.

@ Separability of the Hamiltonian allows us to split the Liouville

operator into pieces.
2 2
@ Harmonic oscillator as an example: H(x,p) = & + %-.

o Corresponding operators: L) = dailzki - %a%

o The full operator: e'“t = []r_, [ec1t/2giLalt gILIAL2] 1 O(tAL?).

@ The conserved Hamiltonian with a = 1 — (At/2)?:

~ 1/2 arccos| 1—=—
H(X7P7At) = 2a 1/2 + :| |<At : > :

o The integrator has closed orbits for At/2 <1,
limar—o H(x, p, At) = H(x, p).
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Rigid body dynamics

Symplectic integrator

@ Similar technique can be applied to rotational motion of a rigid body.
The corresponding map V¢ (q,7) : (g, 7) — (Q, )

e’.‘C/Atq — COS(C/At)q + Sin(CIAt)S/qa

where (; = 4%/77'7-5/(].

@ The composite map for the whole integration at each step consist of

\Ut_ = ll’t,3 o ‘Ut,z o \Ut,l >
+ _
Wt = llJt,l o ‘Ut,z © \Ut,3 ,

where o denotes function composition, i.e. (go f) = g(f(x)).
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Rigid body dynamics

Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

IX:Iy<Iz

Quaternions, dt =0.005, Ngtep = 10*
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S 0.00

~0.25 1
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—1.00
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Rigid body dynamics

Simulation of a free prolate spheroid (ellipsoid of revolution / symmetric top)

Energy conservation, dt = 0.005, nste, = 10

0.0007 A
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Ekin €(%)
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0.0001 A

0.0000

tT]
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Rigid body dynamics

Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

Energy conservation, dt=0.01, ngep, = 10°

munnnn
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Rigid body dynamics with diffusion & hydrodynamic
interactions®

The Langevin type equations in the form of It6 of rigid bodies under the
influence of conservative forces, hydrodynamic interactions, and thermal
noise is given by
. pi ; . . .
i _ i i i A H—
dR _Wdt’ R'(0)=r", P(O)=p', i=1,...,n,
n
dP' = f/(R,Q)dt — > "¢W)(R,Q)

Jj=1

J
%

— 3R, QAT(@)DST (@)Wt
j=1

+) " bU(R, Q)dwi () Zfb'f (R, Q)dW(t),

j=1 =

9Davidchack et al. J. Chem. Phys. 2017.
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Rigid body dynamics with diffusion & hydrodynamic
Interactions

. 1A . A . . . . .
dQ' = ZS(Q’)D’ST(Q’)I'I’dt, RI0)=4q', |d'|=1, i=1,...,n,
dn’ = %§(ﬂ")5"§T(Q")n"dt+ F(R.Q)dt

=3 8(Q) IR, Q)AT(Q) D ST (Q)V dt
j=1

n

—225 Q" RQ)—dt

+2Z§ Q)" BUI(R, Q)dWi(t) +2> " $(Q")" bl (R,Q)dw(t)
j=1

i i :
neo) =", g'r'=0, i=1,...,n.
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Rigid body dynamics with diffusion & hydrodynamic
Interactions

If the solution of these equation X(t) = (R7(t),P7(t), Q7 (t), N7 (¢)) is
an ergodic process, then the invariant measure of X(t) is Gibbsian with
the density
1
p(ra P, q77r) (8 exp(_iH(ra P, q77T)) )
ke T

if the following condition holds

b(ra q)bT(I’, q) = 2kBT£(ra q) :

38 / 45
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Rigid body dynamics with diffusion & hydrodynamic
Interactions

The numerical integrator for this set of equations combines the
deterministic Hamiltonian system with Ornstein-Uhlenbeck-type and
hydrodynamic interactions. Stochastic part can be converted into

dY = —£(r, q)Ydt + b(r,q)dW ,

where Y = (PT 1T)T and W = (w'(t), WT(t))7.
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Rigid body dynamics with diffusion & hydrodynamic
Interactions

The solution is given by

Y(t) = e €Dty (0) + o(r, g, )x(2),

where x is an 6n-dimensional vector consisting of independent Gaussian
random variables with zero mean and unit variance such that

o(t,r.q)o’ (t,r,q) = C(t,r.q),

Here C(t,r,q) is given by
1 - - r
C(t:r.9) = 5Gi(@)K " (q) [Ton — e 2@ 6] (q),

where Gi(q) and K(q) are complicated matrices of the quaternion g.
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Rigid body dynamics with diffusion & hydrodynamic
Interactions

Features of the geometric integrator

@ In each time step, it performs half step of the Verlet-type integrator
for Hamiltonian dynamics, followed by a full step of the
Ornstein-Uhlenbeck process, and finally a second half step of the
Verlet-type integrator.

@ It is quasi-symplectic.
@ It has a natural over-damped limit.

o It automatically preserves |Qj| = 1 for all tx > 0 since it is updated
by an exact rotation at each step.

@ It preserves QLTH = 0 for all t, > 0 via exact rotation.

@ It requires a single computation of forces and the friction matrix per
step.

o It is of weak order 2, i.e. [Ef(Y) —Ef(Ya¢)| < C(At)2.
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Roadmap

Implementation of the full integrator

Simulations on unbounded domains (neglecting boundary effect)
without hydrodynamical interactions

Collision detection

Spherical bodies with hydrodynamical interactions
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