
From point particles to rigid bodies in MCell

Burak Kaynak

Bahar Lab
Department of Computational & Systems Biology

University of Pittsburgh

MMBioS Meeting, December 2018

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 1 / 45



Table of Contents

1 Introduction

2 Diffusion process as a stochastic differential equation

3 Diffusion properties of rigid bodies

4 Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

5 Rigid body dynamics

6 Diffusion of rigid bodies

7 Road map

8 Acknowledgement

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 2 / 45



Introduction
Our motivation

Definition of the problem

To capture the behavior of particles with spatial extent based on their rigid
body features, dynamics, diffusion and hydrodynamic interactions

Fig: Schuss Z., Brownian Dynamics at Boundaries and Interfaces, Springer, 2013.
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Introduction

Our proposal

Coarse-graining the structure of molecules as a series of subunits
connected by linkers.

Each subunit will contain a rigid cluster of Cα atoms, possibly
determined based on SPECTRUS algorithma.

If the molecule is small enough, it may be modeled either as a single
ellipsoid ((a)symmetric top) with minimum volume, or as connected
spheres.

Otherwise, it can be represented by multiple rigid bodies, connected
by linkers (e.g. springs).

a
Ponzoni et al., Structure 2015.
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Example: GLIC – ligand-gated ion channel

6-domain dynamical decomposition by SPECTRUS + RTB1(Rotation
Translation Blocks)

1
Tama et al., Proteins 2000.

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 5 / 45



Table of Contents

1 Introduction

2 Diffusion process as a stochastic differential equation

3 Diffusion properties of rigid bodies

4 Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

5 Rigid body dynamics

6 Diffusion of rigid bodies

7 Road map

8 Acknowledgement

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 6 / 45



Stochastic Differential Equations (SDEs)

A Wiener type stochastic differential equation is given by

dXt = a(Xt , t)dt︸ ︷︷ ︸
deterministic

+ b(Xt , t)dWt︸ ︷︷ ︸
stochastic

,

where Xt ,Wt are a stochastic variable and a Wiener process,
respectively.

A Wiener process can be defined as a limit of an unbiased random
walk with independent Gaussian increments such that

Wt+s −Wt ≈ N (0, s) .
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Stochastic Differential Equations (SDEs)

Non-differentiable with probability 1, albeit continuous.

〈W i
tW

j
s 〉 = σ2

j δij min(t, s) ,

〈dW i
t , dW

j
s 〉∼ δijδ(t − s) ,

dt2 = dt dWt = 0 ,

(dWt)
2 = dt ⇔ dWt ∼

√
∆t .

A formal solution of a SDE is given by

Xt = X0 +

∫ t

0
ds a(Xs , s) +

∫ t

0
dWs b(Xs , s) ,

where the last integral is taken in the Itô sense.
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Stochastic Differential Equations (SDEs)
Itô Calculus

Leibniz’s product rule for stochastic differential:

d(Xt Yt) = YtdXt + XtdYt + dXtdYt .

Ito Lemma:

dFt = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 ,

where Ft = f (Xt).

Integration by parts:∫ b

a
dWt f (t)g ′(Wt) = f (t)g(Wt)

∣∣b
a
−
∫

dtf ′(t)g(Wt)

− 1

2

∫ b

a
dtf (t ′′g (Wt) .
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Ornstein-Uhlenbeck process
One dimensional diffusion of a point particle

One-dimensional Langevin equation is an Ornstein-Uhlenbeck process:

dxt = vtdt ,

mdvt = −ξvtdt + bdWt ,

where m and ξ are the mass and the friction constant, respectively.

Let’s define τ = m/ξ,

vt = v0e
−t/τ +

b

m

∫ t

0
dWse

−(t−s)/τ .

Equipartion theorem allows us to relate the long-time diffusion process
to its average energy over as ensemble as a thermodynamic limit.

〈v2
t 〉eq =

kBT

m
⇒ b2 = 2ξkBT .
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Ornstein-Uhlenbeck process

Similarly for the xt process:

xt = x0 + v0τ
(

1− e−t/τ
)

+
τb

m

∫ t

0
dWs

[
1− e−(t−s)/τ

]
.

Let’s look at the mean square displacement:

〈(xt − x0)2〉eq =
2τkBT

m

[
t − τ(1− e−t/τ )

]
,

lim
t→0
〈(xt − x0)2〉eq =

kBT

m2
t2 ,

lim
t→∞
〈(xt − x0)2〉eq =

2kBT

ξ
t = 2Dt ,

where D is the diffusion constant.(Fluctuation-dissipation theorem2).

2
Kubo, Rep. Prog. Phys. 1966.
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Diffusion properties of rigid bodies
Diffusion and friction tensor

Diffusion D and friction ζ tensors of a 3-dimensional rigid body3:

D =

(
ttD3×3

trDT
3×3

rtD3×3
rrD3×3

)
6×6

=
kBT

µ
ξ−1 ,

µ being the viscosity of the fluid.

The coupling term trD is symmetric only at center of diffusion, which
is unique for a body.

It is zero at the center of hydrodynamic stress if such a point exist.

They do not need to coincide with the center of mass.

3
Brener, J. Coll. Inter. Sci. 1967.
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Diffusion properties of rigid bodies
Diffusion and friction tensor

For spherically isotropic particles (spheres, tetrahedra, cubes,
octahedra, dodecahedra and icosahedra) trD = 0 far away a boundary.

Even for a sphere near a wall, trD 6= 0!

Triaxial ellipsoids possess three mutually orthogonal planes of
reflection symmetry so that

trD = 0 .

Caveat: A general ellipsoid cannot always as a model for the
rotational features of arbitrarily shaped rigid molecules due to
Wegener4.

4
Wegener et al., PNAS 1979.

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 14 / 45



Diffusion properties of rigid bodies
Example: Diffusion tensor of an ellipsoid

Diffusion constants of an ellipsoid5, defined by
x2

1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1:

ttD =
kBT

16πµ

[
e1e1(χ+ a2

1α1) + e2e2(χ+ a2
2α2) + e3e3(χ+ a2

3α3)
]
,

rrD =
3kBT

16πµ

(
e1e1

a2
2α2 + a2

3α3

a2
2 + a2

3

+ e2e2
a2

3α3 + a2
1α1

a2
3 + a2

1

+ e3e3
a2

1α1 + a2
2α2

a2
1 + a2

2

)
,

where eβ are unit vectors parallel to the principal axes of the ellipsoid, and

αβ =

∫ ∞
0

dλ

(a2
β + λ)∆(λ)

, (β = 1, 2, 3) ,

χ =

∫ ∞
0

dλ

∆(λ)
,

∆(λ) =
[
(a2

1 + λ)(a2
2 + λ)(a2

3 + λ)
]1/2

.

5
Brener, J. Coll. Inter. Sci. 1967.
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)6

(x , y) and (x ′, y ′) are the lab and body frames coords., respectively.

a and b denote the
principal directions of
the ellipse.

θ stands for the
orientation of the ellipse
w.r.t. the inertial frame.

6
Y. Han et al., Science 314 (2006) 626.

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 17 / 45



Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

Diffusion tensor in the body frame is diagonal:

D ′ =

Dx ′ 0 0
0 Dy ′ 0
0 0 Dθ

 .

Equations of motion in the lab frame:

dx = cos θ
√

2Dx ′dW
1 − sin θ

√
2Dy ′dW 2 ,

dy = sin θ
√

2Dx ′dW
1 + cos θ

√
2Dy ′dW 2 ,

dθ =
√

2DθdW
3 .

Diffusion tensor is no longer diagonal in the lab frame.
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

The time dependent diffusion coefficients for fixed θ0 in the lab frame
is given by

Dxx = D̄ + ∆D cos 2θ0
1− e−4Dθt

8Dθt
,

Dyy = D̄ −∆D cos 2θ0
1− e−4Dθt

8Dθt
,

Dxy = ∆D sin 2θ0
1− e−4Dθt

8Dθt
,

where D̄ = (Dx ′ + Dy ′)/2 and ∆D = Dx ′ − Dy ′ .
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Uniaxial ellipsoids under strong quasi-2d confinement
(Brownian case)

The vertical axes are the time evolution of diffusion tensor in the lab frame.

Dx ′ = 1.5 , Dy ′ = 1.0 , Dθ = 1.0 , nstep = 103 , nsim = 105

D̄theo = 1.25 , D̄sim = 1.26
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Rigid body dynamics
Euler angles in ZXZ convention

X and x′ are the space-fixed and
body-fixed frames, respectively.

The rotation matrix transforming from
the space-fixed to body-fixed frame is
given by:

x′ = AX .

A =

 cψcφ− cθsφsψ cψsφ+ cθcφsψ sψsθ
−sψcφ− cθsφcψ −sψsφ+ cθcφcψ cψsθ

sθsφ −sθcφ cθ

 ,

where c and s stand for cos and sin, respectively.

Burak Kaynak (University of Pittsburgh) Incorporation of rigid body motion into MCell December 2018 22 / 45



Rigid body dynamics
Euler’s equations

Equations of motion:

I1ω̇1 − (I2 − I3)ω2ω3 = τ1 ,

I2ω̇2 − (I3 − I1)ω3ω1 = τ2 ,

I3ω̇3 − (I1 − I2)ω1ω2 = τ3 ,

where ωα is the angular velocity about the principal axis α, Iα is the
moment of inertia, and τα is the external torque.

The moment of inertia:
Iαβ =

∑
i mi

(
r2
i δαβ − riαriβ

)
, i = 1, . . . ,N, α, β = 1, 2, 3 .

Euler angles:

θ̇ = ω1 cosψ − ω2 cosψ ,

ψ̇ = (ω1 sinψ + ω2 cosψ)/ sin θ ,

φ̇ = ω3 − cot θ(ω1 sinψ + ω2 cosψ) .
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Rigid body dynamics
Euler’s equations

Euler’s equations are singular for small θ values, not ideal for
numerical simulations.

If two rotations become coplanar, then we lose one rotational degree
of freedom, known as Gimbal lock.

Rigid body motion is an example of a constrained dynamical system.
Therefore, appropriate constraint schemes should be implemented for
numerical simulations (SHAKE, RATTLE).

Instead, we can use quaternions not only to represent rotations but
also to describe the rigid body dynamics.
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Rigid body dynamics
Quaternions

Quaternions are an (algebraic) extension of complex numbers.

q = q0 + iq1 + jq2 + kq3 , −1 = i2 = j2 = k2 = ijk ,

q∗ = q0 − iq1 − jq2 − kq3 , ‖q‖2 = q ? q∗ , q−1 =
q∗

‖q‖2
.

They have a noncommutative multiplication:

q ? p = (q0p0 − q · p, q0p + p0q + q× p) .

The multiplication of unit quaternions can preserve their unit length.

Unit quaternions represent rotations in R3 and are nonsingular.

q = cos
‖Φ‖

2
+

Φ

‖Φ‖
sin
‖Φ‖

2
.

Pure quaternions represent vectors: v = (0, vx , vy , vz).

Rotation of a vector via a quaternion: v ′ = q ? v ? q∗ .
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Rigid body dynamics
Rotation of a rigid body by quaternions

Map between Euler angles in ZXZ convention and quaternions

q0 = cos
θ

2
cos

φ+ ψ

2
, q1 = sin

θ

2
cos

φ− ψ
2

,

q2 = sin
θ

2
sin

φ− ψ
2

, q3 + cos
θ

2
sin

φ+ ψ

2
.

Rotation matrix in terms of a quaternion is given by

A(q) = 2

q2
0 + q2

1 − 1
2 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q2
0 + q2

2 − 1
2 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q2
0 + q2

3 − 1
2

 .
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Rigid body dynamics
Rigid body Hamiltonian in terms of quaternions78

The Hamiltonian of n rigid bodies with center of mass coordinates
r = (r1T , . . . , rn

T
)T ∈ R3n, and orientations given by unit

quaternions q = (q1T , . . . , qnT )T , qi = (qi0, q
i
1, q

i
2, q

i
3) ∈ S3.

H(r , p, q, π) =
n∑

i=1

piTpi

2mi
+

n∑
i=1

3∑
l=1

1

I il
Vl(q

i , πi ) + U(r,q) ,

where p and π are, respectively, the center of mass momenta
conjugate to r and the angular momenta conjugate to q such that
qiTπi = 0, i.e. πi ∈ T ∗

qi
S3.

The rotational kinetic energy is given by

Vl(q, π) =
1

8
[πTSlq]2 ,

Vl(q
i , πi )

I il
=

1

2
I il ω

i2

l ,

where Sl are three 4× 4 constant projection matrices.
7

Miller et al. J. Chem. Phys. 2002
8

Davidchack et al. J. Chem. Phys. 2017
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Rigid body dynamics
Symplectic integrator

Hamilton’s equations of motions for (r , p):(
ṙ
ṗ

)
=

(
0 1
−1 0

)(∂H
∂q
∂H
∂p

)

The matrix in the middle above Ω roles as a metric tensor of the
phase space. Any canonical transformations leaving this metric
invariant preserves the volume of the phase space (Liouville’s
theorem):

JΩJT = Ω ,

where J is the Jacobian of the canonical transformations. If
det J = 1, then it is called symplectic.

Symplectic integrators enjoy similar features, especially when the
Hamiltonian is separable.
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Rigid body dynamics
Symplectic integrator

Each step of the numerical integration in this picture corresponds to
an action of an evolution operator, known as Liouville operator.

Separability of the Hamiltonian allows us to split the Liouville
operator into pieces.

Harmonic oscillator as an example: H(x , p) = p2

2 + x2

2 .

Corresponding operators: iLk = ∂Hk
∂p

∂
∂x −

∂Hk
∂x

∂
∂p .

The full operator: e iLt =
∏N

k=1

[
e iL1∆t/2e iL2∆te iL1∆t/2

]
+O(t∆t2) .

The conserved Hamiltonian with α = 1− (∆t/2)2:

H̃(x , p,∆t) =
[

p2

2α1/2 + x2α1/2

2

] arccos
(

1−∆t2

2

)
|∆t| .

The integrator has closed orbits for ∆t/2� 1,
lim∆t→0 H̃(x , p,∆t) = H(x , p) .
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Rigid body dynamics
Symplectic integrator

Similar technique can be applied to rotational motion of a rigid body.
The corresponding map Ψt,l(q, π) : (q, π) 7→ (Q,Π)

e iLl∆tq = cos(ζl∆t)q + sin(ζl∆t)Slq ,

e iLl∆tπ = cos(ζl∆t)π + sin(ζl∆t)Slπ .

where ζl = 1
4Il
πTSlq.

The composite map for the whole integration at each step consist of

Ψ−t = Ψt,3 ◦Ψt,2 ◦Ψt,1 ,

Ψ+
t = Ψt,1 ◦Ψt,2 ◦Ψt,3 ,

where ◦ denotes function composition, i.e. (g ◦ f ) = g(f (x)).
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Rigid body dynamics
Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

Ix = Iy < Iz
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Rigid body dynamics
Simulation of a free prolate spheroid (ellipsoid of revolution / symmetric top)
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Rigid body dynamics
Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)
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Rigid body dynamics
Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)
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Rigid body dynamics with diffusion & hydrodynamic
interactions9

The Langevin type equations in the form of Itô of rigid bodies under the
influence of conservative forces, hydrodynamic interactions, and thermal
noise is given by

dR i =
P i

mi
dt, R i (0) = r i , P i (0) = pi , i = 1, . . . , n ,

dP i = f i (R,Q)dt −
n∑

j=1

ttξ(i ,j)(R,Q)
P j

mj
dt

− 1

2

n∑
j=1

trξ(i ,j)(R,Q)AT (Q j)D̂ j ŜT (Q j)Πjdt

+
n∑

j=1

ttb(i ,j)(R,Q)dw j(t) +
n∑

j=1

trb(i ,j)(R,Q)dW j(t) ,

9
Davidchack et al. J. Chem. Phys. 2017.
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Rigid body dynamics with diffusion & hydrodynamic
interactions

dQ i =
1

4
Ŝ(Q i )D̂ i ŜT (Q i )Πidt , Q i (0) = qi , |qi | = 1 , i = 1, . . . , n ,

dΠi =
1

4
Ŝ(Πi )D̂ i ŜT (Q i )Πidt + F (R,Q)dt

−
n∑

j=1

Š(Q i )rrξ(i ,j)(R,Q)AT (Q j)D̂ j ŜT (Q j)Πjdt

− 2
n∑

j=1

Š(Q i )rtξ(i ,j)(R,Q)
P j

mj
dt

+ 2
n∑

j=1

Š(Q i )rrb(i ,j)(R,Q)dW j(t) + 2
n∑

j=1

Š(Q i )trb(i ,j)(R,Q)dw j(t) ,

Πi (0) = πi , qiTπi = 0, i = 1, . . . , n .
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Rigid body dynamics with diffusion & hydrodynamic
interactions

If the solution of these equation X (t) = (RT (t),PT (t),QT (t),ΠT (t)) is
an ergodic process, then the invariant measure of X (t) is Gibbsian with
the density

ρ(r , p, q, π) ∝ exp(− 1

kBT
H(r , p, q, π)) ,

if the following condition holds

b(r , q)bT (r , q) = 2kBT ξ(r , q) .
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Rigid body dynamics with diffusion & hydrodynamic
interactions

The numerical integrator for this set of equations combines the
deterministic Hamiltonian system with Ornstein-Uhlenbeck-type and
hydrodynamic interactions. Stochastic part can be converted into

dY = −ξ̃(r , q)Ydt + b̃(r , q)dW̃ ,

where Y = (P̃T , Π̃T )T and W̃ = (wT (t),W T (t))T .
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Rigid body dynamics with diffusion & hydrodynamic
interactions

The solution is given by

Y (t) = e−ξ̃(r ,q)tY (0) + σ(r , q, t)χ(t) ,

where χ is an 6n-dimensional vector consisting of independent Gaussian
random variables with zero mean and unit variance such that

σ(t, r , q)σT (t, r , q) = C (t, r , q) ,

Here C (t, r , q) is given by

C (t, r , q) =
1

β
G1(q)K−1(q)

[
16n − e−2K(q)ξ(r ,q)t

]
GT

1 (q) ,

where G1(q) and K (q) are complicated matrices of the quaternion q.
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Rigid body dynamics with diffusion & hydrodynamic
interactions
Features of the geometric integrator

In each time step, it performs half step of the Verlet-type integrator
for Hamiltonian dynamics, followed by a full step of the
Ornstein-Uhlenbeck process, and finally a second half step of the
Verlet-type integrator.

It is quasi-symplectic.

It has a natural over-damped limit.

It automatically preserves |Q i
k | = 1 for all tk ≥ 0 since it is updated

by an exact rotation at each step.

It preserves Q iT
k Π = 0 for all tk ≥ 0 via exact rotation.

It requires a single computation of forces and the friction matrix per
step.

It is of weak order 2, i.e. |Ef (Ỹ )− Ef (Ỹ∆t)| ≤ C (∆t)2.
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Roadmap

Implementation of the full integrator

Simulations on unbounded domains (neglecting boundary effect)
without hydrodynamical interactions

Collision detection

Spherical bodies with hydrodynamical interactions

...
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