From point particles to rigid bodies in MCell

Burak Kaynak

Bahar Lab Department of Computational & Systems Biology University of Pittsburgh

MMBioS Meeting, December 2018

Table of Contents

- Introduction
- Diffusion process as a stochastic differential equation

Our motivation

Definition of the problem

To capture the behavior of particles with spatial extent based on their rigid body features, dynamics, diffusion and hydrodynamic interactions

- Coarse-graining the structure of molecules as a series of subunits connected by linkers.
- Each subunit will contain a rigid cluster of C^{α} atoms, possibly
- If the molecule is small enough, it may be modeled either as a single
- Otherwise, it can be represented by multiple rigid bodies, connected

- Coarse-graining the structure of molecules as a series of subunits connected by linkers.
- Each subunit will contain a rigid cluster of C^{α} atoms, possibly determined based on SPECTRUS algorithm^a.
- If the molecule is small enough, it may be modeled either as a single
- Otherwise, it can be represented by multiple rigid bodies, connected

^aPonzoni et al., Structure 2015.

- Coarse-graining the structure of molecules as a series of subunits connected by linkers.
- Each subunit will contain a rigid cluster of C^{α} atoms, possibly determined based on SPECTRUS algorithma.
- If the molecule is small enough, it may be modeled either as a single ellipsoid ((a)symmetric top) with minimum volume, or as connected spheres.
- Otherwise, it can be represented by multiple rigid bodies, connected

^aPonzoni et al., Structure 2015.

- Coarse-graining the structure of molecules as a series of subunits connected by linkers.
- Each subunit will contain a rigid cluster of C^{α} atoms, possibly determined based on SPECTRUS algorithm^a.
- If the molecule is small enough, it may be modeled either as a single ellipsoid ((a)symmetric top) with minimum volume, or as connected spheres.
- Otherwise, it can be represented by multiple rigid bodies, connected by linkers (e.g. springs).

^aPonzoni et al., Structure 2015.

Example: GLIC - ligand-gated ion channel

6-domain dynamical decomposition by $\mathsf{SPECTRUS} + \mathsf{RTB^1}(\mathsf{Rotation} \ \mathsf{Translation} \ \mathsf{Blocks})$

¹Tama et al., Proteins 2000.

Table of Contents

- Diffusion process as a stochastic differential equation

Stochastic Differential Equations (SDEs)

A Wiener type stochastic differential equation is given by

$$dX_t = \underbrace{a(X_t, t)dt}_{deterministic} + \underbrace{b(X_t, t)dW_t}_{stochastic},$$

where X_t , W_t are a stochastic variable and a Wiener process, respectively.

 A Wiener process can be defined as a limit of an unbiased random walk with independent Gaussian increments such that

$$W_{t+s}-W_t\approx \mathcal{N}(0,s)$$
.

Stochastic Differential Equations (SDEs)

Non-differentiable with probability 1, albeit continuous.

$$egin{aligned} \langle W_t^j W_s^j
angle &= \sigma_j^2 \delta_{ij} \min(t,s)\,, \ & \langle dW_t^i, dW_s^j
angle &\sim \delta_{ij} \delta(t-s)\,, \ & dt^2 &= dt \, dW_t = 0\,, \ & (dW_t)^2 &= dt \Leftrightarrow dW_t \sim \sqrt{\Delta t}\,. \end{aligned}$$

A formal solution of a SDE is given by

$$X_t = X_0 + \int_0^t ds \, a(X_s, s) + \int_0^t dW_s \, b(X_s, s) \,,$$

where the last integral is taken in the Itô sense.

Stochastic Differential Equations (SDEs)

Itô Calculus

• Leibniz's product rule for stochastic differential:

$$d(X_t Y_t) = Y_t dX_t + X_t dY_t + dX_t dY_t.$$

Ito Lemma:

$$dF_t = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2,$$

where $F_t = f(X_t)$.

Integration by parts:

$$\begin{split} \int_a^b dW_t f(t) g'(W_t) &= f(t) g(W_t) \big|_a^b - \int dt f'(t) g(W_t) \\ &- \frac{1}{2} \int_a^b dt f(t_g''(W_t)). \end{split}$$

Ornstein-Uhlenbeck process

One dimensional diffusion of a point particle

One-dimensional Langevin equation is an Ornstein-Uhlenbeck process:

$$dx_t = v_t dt ,$$

$$mdv_t = -\xi v_t dt + bdW_t ,$$

where m and ξ are the mass and the friction constant, respectively.

• Let's define $\tau = m/\xi$,

$$v_t = v_0 e^{-t/\tau} + \frac{b}{m} \int_0^t dW_s e^{-(t-s)/\tau}$$
.

 Equipartion theorem allows us to relate the long-time diffusion process to its average energy over as ensemble as a thermodynamic limit.

$$\langle v_t^2 \rangle_{eq} = \frac{k_B T}{m} \Rightarrow b^2 = 2\xi k_B T.$$

Ornstein-Uhlenbeck process

• Similarly for the x_t process:

$$x_t = x_0 + v_0 \tau \left(1 - e^{-t/\tau} \right) + \frac{\tau b}{m} \int_0^t dW_s \left[1 - e^{-(t-s)/\tau} \right] .$$

Let's look at the mean square displacement:

$$\begin{split} \langle (x_t-x_0)^2 \rangle_{eq} &= \frac{2\tau k_B T}{m} \left[t - \tau (1-e^{-t/\tau}) \right] \,, \\ \lim_{t \to 0} \langle (x_t-x_0)^2 \rangle_{eq} &= \frac{k_B T}{m^2} t^2 \,, \\ \lim_{t \to \infty} \langle (x_t-x_0)^2 \rangle_{eq} &= \frac{2k_B T}{\xi} t = 2Dt \,, \end{split}$$

where D is the diffusion constant. (Fluctuation-dissipation theorem²).

Table of Contents

- Diffusion process as a stochastic differential equation
- Diffusion properties of rigid bodies

Diffusion properties of rigid bodies

Diffusion and friction tensor

• Diffusion D and friction ζ tensors of a 3-dimensional rigid body³:

$$D = \begin{pmatrix} {}^{tt}D_{3\times3} & {}^{tr}D_{3\times3}^T \\ {}^{rt}D_{3\times3} & {}^{rr}D_{3\times3} \end{pmatrix}_{6\times6} = \frac{k_BT}{\mu}\xi^{-1},$$

 μ being the viscosity of the fluid.

- The coupling term ^{tr}D is symmetric only at center of diffusion, which is unique for a body.
- It is zero at the center of hydrodynamic stress if such a point exist.
- They do not need to coincide with the center of mass.

Diffusion properties of rigid bodies

Diffusion and friction tensor

- For spherically isotropic particles (spheres, tetrahedra, cubes, octahedra, dodecahedra and icosahedra) ${}^{tr}D = 0$ far away a boundary.
- Even for a sphere near a wall, ${}^{tr}D \neq 0!$
- Triaxial ellipsoids possess three mutually orthogonal planes of reflection symmetry so that

$$^{tr}D=0$$
.

• Caveat: A general ellipsoid cannot always as a model for the rotational features of arbitrarily shaped rigid molecules due to Wegener⁴.

Diffusion properties of rigid bodies

Example: Diffusion tensor of an ellipsoid

Diffusion constants of an ellipsoid⁵, defined by $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} + \frac{x_3^2}{a_3^2} = 1$:

$$\begin{split} ^{\mathbf{tt}}\mathbf{D} &= \frac{k_B \, I}{16\pi\mu} \left[\mathbf{e_1} \mathbf{e_1} (\chi + a_1^2 \alpha_1) + \mathbf{e_2} \mathbf{e_2} (\chi + a_2^2 \alpha_2) + \mathbf{e_3} \mathbf{e_3} (\chi + a_3^2 \alpha_3) \right], \\ ^{\mathbf{rr}}\mathbf{D} &= \frac{3k_B \, T}{16\pi\mu} \left(\mathbf{e_1} \mathbf{e_1} \frac{a_2^2 \alpha_2 + a_3^2 \alpha_3}{a_2^2 + a_3^2} + \mathbf{e_2} \mathbf{e_2} \frac{a_3^2 \alpha_3 + a_1^2 \alpha_1}{a_3^2 + a_1^2} + \mathbf{e_3} \mathbf{e_3} \frac{a_1^2 \alpha_1 + a_2^2 \alpha_2}{a_1^2 + a_2^2} \right), \end{split}$$

where e_{eta} are unit vectors parallel to the principal axes of the ellipsoid, and

$$egin{aligned} lpha_{eta} &= \int_0^\infty rac{d\lambda}{(a_{eta}^2 + \lambda)\Delta(\lambda)}\,, \qquad (eta = 1,2,3)\,, \ \chi &= \int_0^\infty rac{d\lambda}{\Delta(\lambda)}\,, \ \Delta(\lambda) &= \left[(a_1^2 + \lambda)(a_2^2 + \lambda)(a_3^2 + \lambda)
ight]^{1/2}\,. \end{aligned}$$

Table of Contents

- Diffusion process as a stochastic differential equation
- 4 Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)⁶

• (x, y) and (x', y') are the lab and body frames coords., respectively.

- a and b denote the principal directions of the ellipse.
- θ stands for the orientation of the ellipse w.r.t. the inertial frame.

⁶Y. Han et al., Science 314 (2006) 626.

Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

Diffusion tensor in the body frame is diagonal:

$$D' = \begin{pmatrix} D_{x'} & 0 & 0 \\ 0 & D_{y'} & 0 \\ 0 & 0 & D_{\theta} \end{pmatrix} .$$

Equations of motion in the lab frame:

$$\begin{split} dx &= \cos\theta\sqrt{2D_{x'}}dW^1 - \sin\theta\sqrt{2D_{y'}}dW^2\,,\\ dy &= \sin\theta\sqrt{2D_{x'}}dW^1 + \cos\theta\sqrt{2D_{y'}}dW^2\,,\\ d\theta &= \sqrt{2D_{\theta}}dW^3\,. \end{split}$$

Diffusion tensor is no longer diagonal in the lab frame.

Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

• The time dependent diffusion coefficients for fixed θ_0 in the lab frame is given by

$$\begin{split} D_{\text{xx}} &= \bar{D} + \Delta D \cos 2\theta_0 \frac{1 - e^{-4D_\theta t}}{8D_\theta t} \,, \\ D_{\text{yy}} &= \bar{D} - \Delta D \cos 2\theta_0 \frac{1 - e^{-4D_\theta t}}{8D_\theta t} \,, \\ D_{\text{xy}} &= \Delta D \sin 2\theta_0 \frac{1 - e^{-4D_\theta t}}{8D_\theta t} \,, \end{split}$$

where
$$\bar{D}=(D_{x'}+D_{y'})/2$$
 and $\Delta D=D_{x'}-D_{y'}.$

Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)

The vertical axes are the time evolution of diffusion tensor in the lab frame.

$$D_{x'} = 1.5 \,, \quad D_{y'} = 1.0 \,, \quad D_{\theta} = 1.0 \,, \quad n_{step} = 10^3 \,, \quad n_{sim} = 10^5$$

Table of Contents

- Diffusion process as a stochastic differential equation
- Uniaxial ellipsoids under strong quasi-2d confinement (Brownian case)
- Rigid body dynamics

Euler angles in ZXZ convention

- X and x' are the space-fixed and body-fixed frames, respectively.
- The rotation matrix transforming from the space-fixed to body-fixed frame is given by:

$$\mathbf{x}' = \mathbf{A}\mathbf{X}$$
 .

$$A = \begin{pmatrix} c\psi c\phi - c\theta s\phi s\psi & c\psi s\phi + c\theta c\phi s\psi & s\psi s\theta \\ -s\psi c\phi - c\theta s\phi c\psi & -s\psi s\phi + c\theta c\phi c\psi & c\psi s\theta \\ s\theta s\phi & -s\theta c\phi & c\theta \end{pmatrix},$$

where c and s stand for cos and sin, respectively.

Euler's equations

• Equations of motion:

$$I_1\dot{\omega}_1 - (I_2 - I_3)\omega_2\omega_3 = \tau_1 ,$$

 $I_2\dot{\omega}_2 - (I_3 - I_1)\omega_3\omega_1 = \tau_2 ,$
 $I_3\dot{\omega}_3 - (I_1 - I_2)\omega_1\omega_2 = \tau_3 ,$

where ω_{α} is the angular velocity about the principal axis α , I_{α} is the moment of inertia, and τ_{α} is the external torque.

• The moment of inertia:

$$I_{\alpha\beta} = \sum_{i} m_{i} \left(r_{i}^{2} \delta_{\alpha\beta} - r_{i\alpha} r_{i\beta} \right) , \quad i = 1, \dots, N, \quad \alpha, \beta = 1, 2, 3 .$$

Euler angles:

$$\begin{split} \dot{\theta} &= \omega_1 \cos \psi - \omega_2 \cos \psi \,, \\ \dot{\psi} &= \left(\omega_1 \sin \psi + \omega_2 \cos \psi \right) / \sin \theta \,, \\ \dot{\phi} &= \omega_3 - \cot \theta (\omega_1 \sin \psi + \omega_2 \cos \psi) \,. \end{split}$$

- Euler's equations are singular for small θ values, not ideal for numerical simulations.
- If two rotations become coplanar, then we lose one rotational degree
- Rigid body motion is an example of a constrained dynamical system.
- Instead, we can use quaternions not only to represent rotations but

- Euler's equations are singular for small θ values, not ideal for numerical simulations.
- If two rotations become coplanar, then we lose one rotational degree of freedom, known as Gimbal lock.
- Rigid body motion is an example of a constrained dynamical system.
- Instead, we can use quaternions not only to represent rotations but

- Euler's equations are singular for small θ values, not ideal for numerical simulations.
- If two rotations become coplanar, then we lose one rotational degree of freedom, known as Gimbal lock.
- Rigid body motion is an example of a constrained dynamical system. Therefore, appropriate constraint schemes should be implemented for numerical simulations (SHAKE, RATTLE).
- Instead, we can use quaternions not only to represent rotations but

- Euler's equations are singular for small θ values, not ideal for numerical simulations.
- If two rotations become coplanar, then we lose one rotational degree of freedom, known as Gimbal lock.
- Rigid body motion is an example of a constrained dynamical system. Therefore, appropriate constraint schemes should be implemented for numerical simulations (SHAKE, RATTLE).
- Instead, we can use quaternions not only to represent rotations but also to describe the rigid body dynamics.

Quaternions

Quaternions are an (algebraic) extension of complex numbers.

$$q = q_0 + iq_1 + jq_2 + kq_3$$
, $-1 = i^2 = j^2 = k^2 = ijk$,
 $q^* = q_0 - iq_1 - jq_2 - kq_3$, $||q||^2 = q \star q^*$, $q^{-1} = \frac{q^*}{||q||^2}$.

• They have a noncommutative multiplication:

$$q \star p = (q_0 p_0 - \mathbf{q} \cdot \mathbf{p}, q_0 \mathbf{p} + p_0 \mathbf{q} + \mathbf{q} \times \mathbf{p}).$$

- The multiplication of unit quaternions can preserve their unit length.
- Unit quaternions represent rotations in \mathbb{R}^3 and are nonsingular.

$$q = \cos \frac{\|\mathbf{\Phi}\|}{2} + \frac{\mathbf{\Phi}}{\|\mathbf{\Phi}\|} \sin \frac{\|\mathbf{\Phi}\|}{2}.$$

- Pure quaternions represent vectors: $v = (0, v_x, v_v, v_z)$.
- Rotation of a vector via a quaternion: $v' = q \star v \star q^*$.

Rotation of a rigid body by quaternions

Map between Euler angles in ZXZ convention and quaternions

$$\begin{aligned} q_0 &= \cos\frac{\theta}{2}\cos\frac{\phi + \psi}{2} \,, \quad q_1 &= \sin\frac{\theta}{2}\cos\frac{\phi - \psi}{2} \,, \\ q_2 &= \sin\frac{\theta}{2}\sin\frac{\phi - \psi}{2} \,, \quad q_3 + \cos\frac{\theta}{2}\sin\frac{\phi + \psi}{2} \,. \end{aligned}$$

Rotation matrix in terms of a quaternion is given by

$$A(q) = 2 \begin{pmatrix} q_0^2 + q_1^2 - \frac{1}{2} & q_1q_2 + q_0q_3 & q_1q_3 - q_0q_2 \\ q_1q_2 - q_0q_3 & q_0^2 + q_2^2 - \frac{1}{2} & q_2q_3 + q_0q_1 \\ q_1q_3 + q_0q_2 & q_2q_3 - q_0q_1 & q_0^2 + q_3^2 - \frac{1}{2} \end{pmatrix}.$$

Rigid body Hamiltonian in terms of quaternions⁷⁸

• The Hamiltonian of n rigid bodies with center of mass coordinates $r=(r^{1T},\ldots,r^{n^T})^T\in\mathbb{R}^{3n}$, and orientations given by unit quaternions $q=(q^{1T},\ldots,q^{nT})^T, q^i=(q^i_0,q^i_1,q^i_2,q^i_3)\in\mathbb{S}^3$.

$$H(r, p, q, \pi) = \sum_{i=1}^{n} \frac{p^{iT}p^{i}}{2m_{i}} + \sum_{i=1}^{n} \sum_{l=1}^{3} \frac{1}{l_{l}^{i}} V_{l}(q^{i}, \pi^{i}) + U(\mathbf{r}, \mathbf{q}),$$

where p and π are, respectively, the center of mass momenta conjugate to r and the angular momenta conjugate to q such that $q^{iT}\pi^i=0$, i.e. $\pi^i\in T^*_{\sigma^i}\mathbb{S}^3$.

The rotational kinetic energy is given by

$$V_{l}(q,\pi) = \frac{1}{8} [\pi^{T} S_{l} q]^{2}, \quad \frac{V_{l}(q^{i},\pi^{i})}{I_{l}^{i}} = \frac{1}{2} I_{l}^{i} \omega_{l}^{j^{2}},$$

where S_I are three 4×4 constant projection matrices.

⁷ Miller et al. J. Chem. Phys. 2002

⁸Davidchack et al. J. Chem. Phys. 2017

Symplectic integrator

• Hamilton's equations of motions for (r, p):

$$\begin{pmatrix} \dot{r} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial q} \\ \frac{\partial H}{\partial p} \end{pmatrix}$$

• The matrix in the middle above Ω roles as a metric tensor of the phase space. Any canonical transformations leaving this metric invariant preserves the volume of the phase space (Liouville's theorem):

$$J\Omega J^T = \Omega$$
,

where J is the Jacobian of the canonical transformations. If $\det J = 1$, then it is called symplectic.

• Symplectic integrators enjoy similar features, especially when the Hamiltonian is separable.

Symplectic integrator

- Each step of the numerical integration in this picture corresponds to an action of an evolution operator, known as Liouville operator.
- Separability of the Hamiltonian allows us to split the Liouville operator into pieces.
- Harmonic oscillator as an example: $H(x, p) = \frac{p^2}{2} + \frac{x^2}{2}$.
- Corresponding operators: $i\mathcal{L}_k = \frac{\partial H_k}{\partial \mathbf{n}} \frac{\partial}{\partial \mathbf{v}} \frac{\partial H_k}{\partial \mathbf{v}} \frac{\partial}{\partial \mathbf{n}}$.
- The full operator: $e^{i\mathcal{L}t} = \prod_{k=1}^{N} \left[e^{i\mathcal{L}_1 \Delta t/2} e^{i\mathcal{L}_2 \Delta t} e^{i\mathcal{L}_1 \Delta t/2} \right] + \mathcal{O}(t\Delta t^2)$.
- The conserved Hamiltonian with $\alpha = 1 (\Delta t/2)^2$:

$$ilde{H}(x,p,\Delta t) = \left[rac{p^2}{2lpha^{1/2}} + rac{x^2lpha^{1/2}}{2}
ight] rac{\mathsf{arccos}\left(1 - rac{\Delta t^2}{2}
ight)}{|\Delta t|} \,.$$

• The integrator has closed orbits for $\Delta t/2 \ll 1$, $\lim_{\Delta t \to 0} H(x, p, \Delta t) = H(x, p)$.

Symplectic integrator

 Similar technique can be applied to rotational motion of a rigid body. The corresponding map $\Psi_{t,l}(q,\pi):(q,\pi)\mapsto(Q,\Pi)$

$$e^{i\mathcal{L}_{l}\Delta t}q = \cos(\zeta_{l}\Delta t)q + \sin(\zeta_{l}\Delta t)S_{l}q,$$

$$e^{i\mathcal{L}_{l}\Delta t}\pi = \cos(\zeta_{l}\Delta t)\pi + \sin(\zeta_{l}\Delta t)S_{l}\pi.$$

where $\zeta_I = \frac{1}{4I_I} \pi^T S_I q$.

The composite map for the whole integration at each step consist of

$$\Psi_{t}^{-} = \Psi_{t,3} \circ \Psi_{t,2} \circ \Psi_{t,1} ,
\Psi_{t}^{+} = \Psi_{t,1} \circ \Psi_{t,2} \circ \Psi_{t,3} ,$$

where \circ denotes function composition, i.e. $(g \circ f) = g(f(x))$.

Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

$$I_x = I_y < I_z$$

Simulation of a free prolate spheroid (ellipsoid of revolution / symmetric top)

Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

Simulation of a prolate spheroid (ellipsoid of revolution / symmetric top)

Table of Contents

- Diffusion process as a stochastic differential equation

- O Diffusion of rigid bodies

The Langevin type equations in the form of Itô of rigid bodies under the influence of conservative forces, hydrodynamic interactions, and thermal noise is given by

$$dR^{i} = \frac{P^{i}}{m^{i}}dt, \quad R^{i}(0) = r^{i}, \quad P^{i}(0) = p^{i}, \quad i = 1, ..., n,$$

$$dP^{i} = f^{i}(\mathbf{R}, \mathbf{Q})dt - \sum_{j=1}^{n} {}^{tt}\xi^{(i,j)}(\mathbf{R}, \mathbf{Q})\frac{P^{j}}{m^{j}}dt$$

$$-\frac{1}{2}\sum_{j=1}^{n} {}^{tr}\xi^{(i,j)}(\mathbf{R}, \mathbf{Q})A^{T}(Q^{j})\hat{D}^{j}\hat{S}^{T}(Q^{j})\Pi^{j}dt$$

$$+\sum_{j=1}^{n} {}^{tt}b^{(i,j)}(\mathbf{R}, \mathbf{Q})dw^{j}(t) + \sum_{j=1}^{n} {}^{tr}b^{(i,j)}(\mathbf{R}, \mathbf{Q})dW^{j}(t),$$

[.] Davidchack et al. J. Chem. Phys. 2017.

$$dQ^{i} = \frac{1}{4}\hat{S}(Q^{i})\hat{D}^{i}\hat{S}^{T}(Q^{i})\Pi^{i}dt, \quad Q^{i}(0) = q^{i}, \quad |q^{i}| = 1, \quad i = 1, ..., n,$$

$$d\Pi^{i} = \frac{1}{4}\hat{S}(\Pi^{i})\hat{D}^{i}\hat{S}^{T}(Q^{i})\Pi^{i}dt + F(\mathbf{R}, \mathbf{Q})dt$$

$$-\sum_{j=1}^{n} \check{S}(Q^{i})^{rr}\xi^{(i,j)}(\mathbf{R}, \mathbf{Q})A^{T}(Q^{j})\hat{D}^{j}\hat{S}^{T}(Q^{j})\Pi^{j}dt$$

$$-2\sum_{j=1}^{n} \check{S}(Q^{i})^{rt}\xi^{(i,j)}(\mathbf{R}, \mathbf{Q})\frac{P^{j}}{m^{j}}dt$$

$$+2\sum_{j=1}^{n} \check{S}(Q^{i})^{rr}b^{(i,j)}(\mathbf{R}, \mathbf{Q})dW^{j}(t) + 2\sum_{j=1}^{n} \check{S}(Q^{i})^{tr}b^{(i,j)}(\mathbf{R}, \mathbf{Q})dw^{j}(t)$$

$$\Pi^{i}(0) = \pi^{i}, \quad q^{iT}\pi^{i} = 0, \quad i = 1, ..., n.$$

If the solution of these equation $X(t) = (\mathbf{R}^T(t), \mathbf{P}^T(t), \mathbf{Q}^T(t), \mathbf{\Pi}^T(t))$ is an ergodic process, then the invariant measure of X(t) is Gibbsian with the density

$$\rho(r, p, q, \pi) \propto \exp(-\frac{1}{k_B T} H(r, p, q, \pi)),$$

if the following condition holds

$$b(r,q)b^{T}(r,q) = 2k_B T\xi(r,q).$$

38 / 45

The numerical integrator for this set of equations combines the deterministic Hamiltonian system with Ornstein-Uhlenbeck-type and hydrodynamic interactions. Stochastic part can be converted into

$$dY = -\tilde{\xi}(r,q)Ydt + \tilde{b}(r,q)d\tilde{W},$$

where
$$Y = (\tilde{P}^T, \tilde{\Pi}^T)^T$$
 and $\tilde{W} = (w^T(t), W^T(t))^T$.

The solution is given by

$$Y(t) = e^{-\tilde{\xi}(r,q)t}Y(0) + \sigma(r,q,t)\chi(t),$$

where χ is an 6*n*-dimensional vector consisting of independent Gaussian random variables with zero mean and unit variance such that

$$\sigma(t,r,q)\sigma^{T}(t,r,q)=C(t,r,q),$$

Here C(t, r, q) is given by

$$C(t,r,q) = rac{1}{eta} G_1(q) K^{-1}(q) \left[{f 1}_{6n} - e^{-2K(q)\xi(r,q)t}
ight] G_1^T(q) \,,$$

where $G_1(q)$ and K(q) are complicated matrices of the quaternion q.

Features of the geometric integrator

- In each time step, it performs half step of the Verlet-type integrator for Hamiltonian dynamics, followed by a full step of the Ornstein-Uhlenbeck process, and finally a second half step of the Verlet-type integrator.
- It is quasi-symplectic.
- It has a natural over-damped limit.
- It automatically preserves $|Q_k^i| = 1$ for all $t_k \ge 0$ since it is updated by an exact rotation at each step.
- It preserves $Q_{\nu}^{iT}\Pi = 0$ for all $t_k \geq 0$ via exact rotation.
- It requires a single computation of forces and the friction matrix per step.
- It is of weak order 2, i.e. $|\mathbb{E}f(\tilde{Y}) \mathbb{E}f(\tilde{Y}_{\Delta t})| \leq C(\Delta t)^2$.

Table of Contents

- Diffusion process as a stochastic differential equation

- Road map

Roadmap

- Implementation of the full integrator
- Simulations on unbounded domains (neglecting boundary effect) without hydrodynamical interactions
- Collision detection
- Spherical bodies with hydrodynamical interactions

Table of Contents

- Diffusion process as a stochastic differential equation

- Acknowledgement

Acknowledgement

- Bahar Lab / University of Pittsburgh: Luca Ponzoni. Ivet Bahar System administration: Gengkon Lum, Afshin Eskandari Nasrabad
- Sejnowski Lab / Salk Institute: Tom Bartol, Terrence Sejnowski

